Artificial pancreas
Automatic and semi-automatic regulation of glycemia in type 1 diabetes mellitus patients is a long standing control challenge. The main drawback of both open- and closed-loop therapies is the excess of insulin delivered after the meals, which in many cases produces severe hypoglycemia events. Intra-patient variability, delays and lack of accurate on-line blood glucose level measurement impose severe limitations to the achievable performance. We develop control algorithms to reduce the events of hypoglycemia without increasing the risk of hyperglycemia.
Publications
Theses
Patents
De Battista H, Garelli F, León F, Vehí J.
Submitted. Method and software for the determination and time profile of an insulin dosis. |
Book Chapters
Colmegna P, Garelli F, De Battista H, Bianchi FD, Sánchez-Peña R.
2019. The ARG algorithm: clinical trials in Argentina. The Artificial Pancreas: current situation and future directions. :79-104. |
Journal Articles
Bianchi FD, Sánchez-Peña RS, Garelli F.
2023. Online adjustable linear parameter-varying controller for artificial pancreas systems. Biomedical Signal Processing and Control. 86:105164. |
Rosales N, De Battista H, Garelli F.
2022. Hypoglycemia prevention: PID-type controller adaptation for glucose rate limiting in Artificial Pancreas System. Biomedical Signal Processing and Control. 71:103106. |
Fushimi E, De Battista H, Garelli F.
2022. A Dual-Hormone Multicontroller for Artificial Pancreas Systems. IEEE Journal of Biomedical and Health Informatics. :1-8. |
Garelli F, Fushimi E, Rosales N, Arambarri D, Mendoza L, Serafini MCecilia, Moscoso-Vásquez M, Stasi M, Duette P, García-Arabehety J et al..
2022. First Outpatient Clinical Trial of a Full Closed-Loop Artificial Pancreas System in South America. Journal of Diabetes Science and Technology. :19322968221096162. |
Rodríguez-Sarmiento DL, León-Vargas F, Garelli F.
2022. Practical constraint definition in safety schemes for artificial pancreas systems. The International Journal of Artificial Organs. 45:535-542. |
Garelli F, Fushimi E, Rosales N, Arambarri D, Serafini MCecilia, De Battista H, Grosembacher L, Sánchez-Peña RSalvador.
2022. Control no-híbrido de glucemia ensayado en pacientes ambulatorios con Diabetes Tipo 1. Revista Iberoamericana de Automática e Informática industrial. |
Moscoso-Vásquez M, Colmegna P, Rosales N, Garelli F, Sánchez-Peña R.
2020. Control-Oriented Model with Intra-Patient Variations for an Artificial Pancreas. IEEE Journal of Biomedical and Health Informatics. :1-1. |
Fushimi E, Serafini MCecilia, De Battista H, Garelli F.
2020. Automatic glycemic regulation for the pediatric population based on switched control and time-varying IOB constraints: an in silico study. Medical & Biological Engineering & Computing. |
Garelli F, Rosales N, Fushimi E, Arambarri D, Mendoza L, De Battista H, Sánchez-Peña R, Arabehety JGarcía, Distefano S, Barcala C et al..
2020. Remote Glucose Monitoring Platform for Multiple Simultaneous Patients at Coronavirus Disease 2019 Intensive Care Units: Case Report Including Adults and Children. Diabetes Technology & Therapeutics. |
García-Jaramillo M, León-Vargas F, Rosales N, Molano A, Garelli F.
2019. Interval Simulator of the Glucose-Insulin System. Applied Computer Sciences in Engineering. |
Fushimi E, Colmegna P, De Battista H, Garelli F, Sánchez-Peña R.
2019. Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement. Journal of Diabetes Science and Technology. :1932296819864585. |
Rosales N, De Battista H, Vehí J, Garelli F.
2018. Open-loop glucose control: Automatic IOB-based Super-Bolus feature for commercial insulin pumps. Computer Methods and Programs in Biomedicine. 159:145-158. |
Fushimi E, Rosales N, De Battista H, Garelli F.
2018. Artificial pancreas clinical trials: Moving towards closed-loop control using insulin-on-board constraints. Biomedical Signal Processing and Control. 45:1-9. |
Colmegna P, Garelli F, De Battista H, Sánchez-Peña R.
2018. Automatic regulatory control in type 1 diabetes without carbohydrate counting. Control Engineering Practice. 74:22-32. |
Sánchez-Peña R, Colmegna P, Garelli F, De Battista H, García-Violini D, Moscoso-Vásquez M, Rosales N, Fushimi E, Campos-Náñez E, Breton M et al..
2018. Artificial Pancreas: Clinical Study in Latin America Without Premeal Insulin Boluses. Journal of Diabetes Science and Technology. 12(5):914-925. |
Sánchez-Peña R, Colmegna P, Grosembacher L., Breton M., De Battista H, Garelli F, Belloso W.H, Campos-Nánez E., Simonovich V., Beruto V. et al..
2017. Artificial Pancreas: First Clinical Trials in Argentina. IFAC-PapersOnLine. 50:7731-7736. |
León-Vargas F, Garelli F, De Battista H, Vehí J.
2015. Postprandial response improvement via safety layer in closed-loop blood glucose controllers. Biomedical Signal Processing and Control. 16:80-87. |
Revert A, Garelli F, Picó J, De Battista H, Rossetti P, Vehí J, Bondia J.
2015. Safety auxiliary feedback element for the artificial pancreas in type 1 diabetes. Diabetes Technology and Therapeutics. 17:S35-S36. |
Revert A, Garelli F, Picó J, De Battista H, Rossetti P, Vehí J, Bondia J.
2013. Safety Auxiliary Feedback Element for the Artificial Pancreas in Type 1 Diabetes. Biomedical Engineering, IEEE Transactions on. 60:2113-2122. |
León-Vargas F, Garelli F, De Battista H, Vehí J.
2013. Postprandial blood glucose control using a hybrid adaptive PD controller with insulin-on-board limitation. Biomedical Signal Processing and Control. 8:724-732. |